Figure B.1. Georges Bank, Mid-Atlantic Bight Scallop Biomass, Landings, and Survey Indices

Georges Bank Sea Scallop Biomass Density NMFS Annual Sea Scallop Survey

Figure B.2. Georges Bank, Mid-Atlantic Bight Scallop Biomass, Landings, and Survey Indices

Mid-Atlantic Bight Sea Scallop Biomass Density NMFS Annual Sea Scallop Survey

Figure B.3. Georges Bank, Mid-Atlantic Bight Scallop Biomass, Landings, and Survey Indices

Figure B.4. Georges Bank, Mid-Atlantic Bight Scallop Biomass, Landings, and Survey Indices

Figure B.5. Sculpin abundance from fall bottom trawl survey

Figure B.6. Blue crab abundance

Figure B.7a. Central Gulf of Maine Calanus finmarchicus, c.1-4, c.5-6 anomalies

Percentile departures of Calanus spp., c.1-4 from 1961 through 1990 medians in the central Gulf of Maine. Fifteen month running average curve superimposed. From:MARMAP Ships of Opportunity Program.

Figure B.7b. Central Gulf of Maine Calanus finmarchicus, c.1-4, c.5-6 anomalies

Figure B.8. Anomalies of major zooplankton during spring

Standardized departures of mean annual plankton abundances during 'spring' (15 Feb - 15 May) on Georges Bank. From: NOAA, NEFSC, MARMAP Surveys.

Figure B.9. Time and space conditions of Centropagus typicus across the continental shelf

Time and space conditions of Centropages typicus, c. 4-6, across the continental shelf and slope southeast of New York City during the 1976 through 1990 base period. A. Base period mean abundance. B. Coefficient of variation about the base period mean. C. Percent of samples during the base period with taxon present. From: Jossi et al., In Review.

Figure B.10. Calanus abundance by day of year over time

Calanus finmarchicus, c1-4, between Massachusetts & Cape Sable (10m). From: MARMAP Ships of Opportunity Program.

Figure B.11. The overall zooplankton biomass and abundance trends of two dominant copepods: Calanus finmarchicus and Centropages typicus

Georges Banks

% Departures (std units) from time series monthly mean. Trend line is forth order polynomial fit to data.

Figure B.12. The overall zooplankton biomass and abundance trends of two dominant copepods: Calanus finmarchicus and Centropages typicus

Gulf of Maine

% Departures (std units) from time series monthly mean. Trend line is forth order polynomial fit to data.

Figure B.13. *Total Zooplankton Biomass*

Figure B.14a. Relative abundance of northeast species groups (groundfish, pelagics, elasmobranchs, others) from combined fall and spring bottom trawl surveys

Figure B.14b. Relative abundance of northeast species groups (groundfish, pelagics, elasmobranchs, others) from combined fall and spring bottom trawl surveys

Figure B14c. Relative abundance of northeast species groups (groundfish, pelagics, elasmobranchs, others) from combined fall and spring bottom trawl surveys

Figure B.14d. Relative abundance of northeast species groups (groundfish, pelagics, elasmobranchs, others) from combined fall and spring bottom trawl surveys

Figure B.15. *Principal groundfish biomass for Georges Bank from autumn bottom trawl survey*

Figure B.16. Elasmobranch biomass for Georges Bank from autumn bottom trawl survey

Figure B.17. Principal pelagics biomass estimates from recent assessments

Figure B.18. Cephalapod biomass for Georges Bank from fall bottom trawl survey

Figure B.19. Frequency of occurrence of parasitic nematodes in all predators

Figure B.20. Winter flounder collected by beam and otter trawls

Winter flounder

Figure B.21. *Haddock and cod % maturity for ages 1 and 2*

Figure B.22. *Cod survival ratio anomaly*

Figure B.23. *Haddock survival ratio anomaly*

Figure B.24. Yellowtail flounder survival ratio anomaly

Figure B.25a. Total biomass for all from both fall and spring bottom trawl surveys

Figure B.25b. Total biomass from both fall and spring bottom trawl surveys

Figure B.26. Mean length of all species collected in fall and spring bottom trawl

Figure B.27a. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27b. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27c. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27d. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27e. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27f. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27g. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27h. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27i. Abundance of various guilds in fall and spring bottom trawl surveys

Biotic Graph 27i. Small Crustacean Predators Abundance Index

Figure B.27j. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27k. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.27l. Abundance of various guilds in fall and spring bottom trawl surveys

Figure B.28. Gulf of Maine total species diversity from bottom trawl survey

Figure B.29. Gulf of Maine abundant species diversity from bottom trawl survey

Figure B.30. Gulf of Maine species evenness from bottom trawl survey

Figure B.31. Georges Bank total species diversity from bottom trawl survey

Figure B.32. Georges Bank abundant species diversity from bottom trawl surveys

Figure B.33. Georges Bank species evenness from bottom trawl surveys

Figure B.34. *Mid-Atlantic Bight total species diversity from bottom trawl surveys*

Figure B.35. Mid-Atlantic Bight Abundant species diversity from bottom trawl surveys

Figure B.36. Mid-Atlantic Bight Species evenness from bottom trawl survey

Figure B.37. Silver hake linkage density

Biotic Graph 37. Number of Silver Hake Predator and Prey Species

Figure B.38. *Total consumption by 12 piscivores*

Figure B.39. Total fish consumption by six piscivores on Georges Bank

Six piscivores, GB

Figure B.40a. Consumption of prey species by 12 piscivores

Figure B.40b. Consumption of prey species by 12 piscivores

Figure B.40c. Consumption of prey species by 12 piscivores

Figure B.40d. Consumption of prey species by 12 piscivores

Figure B.40e. Consumption of prey species by 12 piscivores

Figure B.40f. Consumption of prey species by 12 piscivores

Figure B.41. Snapshot of food web for three years in three different decades

Figure B.42. Snapshot of food web for three years in three different decades

Figure B.43. Snapshot of food web for three years in three different decades

Figure B.44. Fish consumption and % fish in diet of cod

Figure B.45. Fish consumption by cod at age

Cod

Figure B.46. Cod % diet composition of major fish prey

Figure B.47. Spiny dogfish % diet composition of major fish prey

Figure B.48a. Number of predators for sand lance, herring, hermit crab, ophiuroids, mysids, and red hake

Figure B.48b. Number of predators for sand lance, herring, hermit crab, ophiuroids, mysids, and red hake

Figure B.48c. Number of predators for sand lance, herring, hermit crab, ophiuroids, mysids, and red hake

Figure B.48d. Number of predators for sand lance, herring, hermit crab, ophiuroids, mysids, and red hake

Figure B.48e. Number of predators for sand lance, herring, hermit crab, ophiuroids, mysids, and red hake

Figure B.48f. Number of predators for sand lance, herring, hermit crab, ophiuroids, mysids, and red hake

Figure B.49. Silver hake % cannibalism

Figure B.50. Silver hake and red hake number of prey items

Figure B.51. *Herring consumption to landings ratio*

Figure B.52. Mackerel consumption to landings ratio

Figure B.53. Loligo consumption to landings ratio

